Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== I compute number of photons and times for representative photon energies and fluxes. (I assume absorption efficiency α=η=1\alpha=\eta=1α=η=1 in the numerical examples below; realistic values will reduce the capture rate.) === Photon counts needed (no losses) * visible photon, λ=500 nm\lambda=500\ \mathrm{nm}λ=500 nm (hf≈3.97×10−19 Jh f \approx 3.97\times10^{-19}\,\mathrm{J}hf≈3.97×10−19J, ~2.48 eV): Nvis≈8.187×10−143.97×10−19≈2.06×105 photons.N_{\rm vis}\approx \frac{8.187\times10^{-14}}{3.97\times10^{-19}} \approx 2.06\times10^5\ \text{photons}.Nvis≈3.97×10−198.187×10−14≈2.06×105 photons. * UV photon, λ=100 nm\lambda=100\ \mathrm{nm}λ=100 nm (hf≈1.99×10−18 Jh f \approx 1.99\times10^{-18}\,\mathrm{J}hf≈1.99×10−18J): NUV≈4.12×104 photons.N_{\rm UV}\approx 4.12\times10^4\ \text{photons}.NUV≈4.12×104 photons. * single 511 keV511\ \mathrm{keV}511 keV gamma photon (hf≈mec2h f \approx m_e c^2hf≈mec2): Nγ≈1(one gamma of 511 keV deposits mec2).N_{\gamma}\approx 1 \quad(\text{one gamma of 511 keV deposits }m_e c^2).Nγ≈1(one gamma of 511 keV deposits mec2). Times to collect mec2m_e c^2mec2 (two alternative cross-section choices = projected geometric area πR2\pi R^2πR2 vs Thomson cross-section σT\sigma_TσT): Let FFF be directional flux (W·m⁻²). For sunlight at Earth: F⊙≈1361 W/m2F_{\odot}\approx 1361\ \mathrm{W/m^2}F⊙≈1361 W/m2. For example lasers we use two sample intensities: moderate high Flaser1=1012 W/m2F_{\rm laser1}=10^{12}\ \mathrm{W/m^2}Flaser1=1012 W/m2, extreme Flaser2=1020 W/m2F_{\rm laser2}=10^{20}\ \mathrm{W/m^2}Flaser2=1020 W/m2. * Sunlight (directional), F=1361 W/m2F=1361\ \mathrm{W/m^2}F=1361 W/m2: - using projected geometry πR2\pi R^2πR2: t≈9.65×1012 s≈3.06×105 years.t \approx 9.65\times10^{12}\ \mathrm{s} \approx 3.06\times10^5\ \text{years}.t≈9.65×1012 s≈3.06×105 years. - using Thomson cross-section σT\sigma_TσT (larger intercept): t≈9.04×1011 s≈2.87×104 years.t \approx 9.04\times10^{11}\ \mathrm{s} \approx 2.87\times10^4\ \text{years}.t≈9.04×1011 s≈2.87×104 years. * High-intensity laser, F=1012 W/m2F=10^{12}\ \mathrm{W/m^2}F=1012 W/m2: - projected geometry: t ≈ 1.31×104 s≈3.65 hours.t\!\approx\!1.31\times10^4\ \mathrm{s}\approx 3.65\ \mathrm{hours}.t≈1.31×104 s≈3.65 hours. - Thomson area: t ≈ 1.23×103 s≈20.5 minutes.t\!\approx\!1.23\times10^3\ \mathrm{s}\approx 20.5\ \mathrm{minutes}.t≈1.23×103 s≈20.5 minutes. * Ultra-intense laser, F=1020 W/m2F=10^{20}\ \mathrm{W/m^2}F=1020 W/m2: - projected geometry: t ≈ 1.31×10−4 st\!\approx\!1.31\times10^{-4}\ \mathrm{s}t≈1.31×10−4 s (0.13 ms). - Thomson area: t ≈ 1.23×10−5 st\!\approx\!1.23\times10^{-5}\ \mathrm{s}t≈1.23×10−5 s (12 µs). * Cosmic microwave background (isotropic), T≈2.725 KT\approx2.725\ \mathrm{K}T≈2.725 K: - ambient isotropic absorption (blackbody formula) gives astronomically long times (∼1021\sim10^{21}∼1021 s → many orders of the Universe's age) — i.e. negligible. Photon arrival rates (visible, projected area): * sunlight: ~ 2.1×10−82.1\times10^{-8}2.1×10−8 visible photons/sec (one visible photon every ~170 days, at geometric projected area) * laser 1012 W/m210^{12}\ \mathrm{W/m^2}1012 W/m2: ~ 161616 visible photons/sec (projected area) * laser 1020 W/m210^{20}\ \mathrm{W/m^2}1020 W/m2: ~ 1.6×1091.6\times10^91.6×109 visible photons/sec (projected area) (If you use σ_T instead of the geometric cross-section, photon arrival rates grow by factor ≈σT/(πR2)≈10.66\approx\sigma_T/(\pi R^2)\approx 10.66≈σT/(πR2)≈10.66.)
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)