Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6922876a-7988-8007-9c62-5f71772af6aa
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Insert after (2.1) defining ψτ\psi_\tauψτ: ===== <syntaxhighlight lang="latex">\medskip\noindent\textbf{Clipped score.} For $B\ge 1$, define the clipped score \[ \tilde\psi_{\tau,B}(u)\ :=\ \mathrm{clip}\big(\psi_\tau(u),\,[-B/\sqrt{\tau},\,B/\sqrt{\tau}]\big), \] and let $\tilde\psi'_{\tau,B}$ be any selection of its (a.e.) derivative; then $\|\tilde\psi_{\tau,B}\|_\infty\le B/\sqrt{\tau}$ and $\|\tilde\psi'_{\tau,B}\|_\infty\le C/\tau$ uniformly in $B$. We henceforth use $\tilde\psi_{\tau_\star,B}$ in the estimating equation \eqref{eq:M-est}, and write $\hat\theta_\ep$ for any solution. The clipping level $B$ is fixed (e.g. $B=10$); on the $W_2$-ball all bounds below are uniform in $B$ and coincide with the unclipped estimator whenever no sample point falls in the extreme tails. </syntaxhighlight> Replace Lemma \ref{lem:score-moments} by the following (stated and proved for the clipped score): <syntaxhighlight lang="latex">\begin{lemma}[Uniform control of clipped score moments]\label{lem:score-moments-clipped} Fix $\tau\in(0,\tfrac12]$ and let $\tilde\psi_\tau:=\tilde\psi_{\tau,B}$ be the clipped score defined above. There exist constants $C_1,C_2,C_3<\infty$ (independent of $B$) such that for all $Q$ with $W_2(Q,\mu_\theta)\le \ep$, \begin{align} \left|\E_Q[\tilde\psi_\tau]-\E_{\nu_{\theta,\tau}}[\tilde\psi_\tau]\right| &\le C_1\,\frac{\ep}{\sqrt{\tau}},\label{eq:bias-score-clipped}\\ \left|\E_Q[\tilde\psi'_\tau]-\E_{\nu_{\theta,\tau}}[\tilde\psi'_\tau]\right| &\le C_2\,\frac{\ep}{\sqrt{\tau}},\label{eq:curv-score-clipped}\\ \left|\E_Q[\tilde\psi_\tau^2]-\E_{\nu_{\theta,\tau}}[\tilde\psi_\tau^2]\right| &\le C_3\,\frac{\ep}{\tau^{3/2}}.\label{eq:var-score-clipped} \end{align} \end{lemma} \begin{proof} Apply Lemma~\ref{lem:dyn-W2} with $P=\nu_{\theta,\tau}$, $\varphi=\tilde\psi_\tau$, $\varphi=\tilde\psi'_\tau$, and $\varphi=\tilde\psi_\tau^2$, respectively. Since $\|\tilde\psi'_\tau\|_\infty\lesssim \tau^{-1}$ and $\|(\tilde\psi_\tau^2)'\|_\infty\lesssim \tau^{-3/2}$, we have \[ \int_0^1 \E_{P_t}[(\tilde\psi'_\tau(X_t-\theta))^2]\,dt \lesssim \tau^{-1},\quad \int_0^1 \E_{P_t}[((\tilde\psi_\tau^2)'(X_t-\theta))^2]\,dt \lesssim \tau^{-3}, \] uniformly over $Q$ with $W_2(Q,\mu_\theta)\le \ep$. The claim follows using $W_2(Q,\nu_{\theta,\tau})\le \ep + W_2(\mu_\theta,\nu_{\theta,\tau})$ and Lemma~\ref{lem:info-W2}. \end{proof} </syntaxhighlight> Adjust the M‑estimation remainder bounds (replace all occurrences of ψ,ψ′,ψ′′\psi,\psi',\psi''ψ,ψ′,ψ′′ by ψ~τ,ψ~τ′\tilde\psi_\tau,\tilde\psi'_\tauψ~τ,ψ~τ′, and remove every use of ∥ψ′′∥∞\|\psi''\|_\infty∥ψ′′∥∞. Where you currently use Lipschitz in ttt via ∥ψ′′∥∞\|\psi''\|_\infty∥ψ′′∥∞, replace it by the uniform bound ∥ψ~τ′∥∞≲τ−1\|\tilde\psi'_\tau\|_\infty\lesssim\tau^{-1}∥ψ~τ′∥∞≲τ−1 and the simple inequality ∣mn(tˉ)−mn(θ)∣≤1n∑i=1n∣ψ~τ′(Xi′−tˉ)−ψ~τ′(Xi′−θ)∣≤∥ψ~τ′∥Lip ∣tˉ−θ∣≲τ−1 ∣tˉ−θ∣.|m_n(\bar t)-m_n(\theta)| \le \frac{1}{n}\sum_{i=1}^n\big|\tilde\psi'_\tau(X_i'-\bar t)-\tilde\psi'_\tau(X_i'-\theta)\big| \le \|\tilde\psi'_\tau\|_\mathrm{Lip}\,|\bar t-\theta| \lesssim \tau^{-1}\,|\bar t-\theta|.∣mn(tˉ)−mn(θ)∣≤n1i=1∑nψ~τ′(Xi′−tˉ)−ψ~τ′(Xi′−θ)≤∥ψ~τ′∥Lip∣tˉ−θ∣≲τ−1∣tˉ−θ∣. Finally, every appearance of \EQ[ψ4]\E_Q[\psi^4]\EQ[ψ4] can be replaced by ∥ψ~τ∥∞4≲τ−2\|\tilde\psi_\tau\|_\infty^4\lesssim \tau^{-2}∥ψ~τ∥∞4≲τ−2, uniformly over the W2W_2W2-ball.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)