Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Here is a single LaTeX snippet drop-in that packages the full “solve for ϕC\phiCϕC” calculation, plus the two regimes a… === Here is a single LaTeX snippet (drop-in) that packages the full “solve for ϕ(C)\phi(C)ϕ(C)” calculation, plus the two regimes and the ϕ(C)=O(ρ)\phi(C)=O(\rho)ϕ(C)=O(ρ) headline under typical local-cluster scalings. It’s written to fit directly after your definition of Δ(C)\Delta(C)Δ(C) (or anywhere in that section). open-problem-fountoulakis22a <syntaxhighlight lang="latex">% ------------------------------------------------------------ % Solving the Delta(C)-condition for conductance, with regimes. % ------------------------------------------------------------ \subsubsection*{How small must $\phi(C)$ be? Solving the $\Delta(C)$ condition} Recall the sufficient slack condition used in the outside-margin bound: \begin{equation}\label{eq:Delta_slack_condition} \Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}, \qquad \eta\in(0,1), \end{equation} where \[ \Delta(C) = \frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \] \begin{lemma}[Conductance threshold implied by \eqref{eq:Delta_slack_condition}] \label{lem:phi_threshold_exact} The condition \eqref{eq:Delta_slack_condition} is equivalent to \begin{equation}\label{eq:phi_max_exact} \phi(C)\;\le\;\phi_{\max}(C) :=\frac{4\mu_C^2(1-\eta)^2\rho^2\,d_{\mathrm{out}}^2\,d_{\mathrm{in}}} {(1-\alpha)^2\,\mathrm{vol}(C)\,\Bigl(\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\Bigr)^2}. \end{equation} \end{lemma} \begin{proof} Start from \eqref{eq:Delta_slack_condition} and substitute the definition of $\Delta(C)$. Cancel the positive factor $\alpha$ on both sides to get \[ \frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\right) \le (1-\eta)\rho\sqrt{d_{\mathrm{out}}}. \] Rearrange to isolate the square root: \[ \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}} \le \frac{2\mu_C}{1-\alpha}\cdot \frac{(1-\eta)\rho\sqrt{d_{\mathrm{out}}}}{\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}}. \] Squaring both sides and solving for $\phi(C)$ gives \eqref{eq:phi_max_exact}. \end{proof} \begin{remark}[Two useful regimes]\label{rem:phi_regimes} Let $a:=\frac{1}{\sqrt{d_v}}$ and $b:=\rho\sqrt{\mathrm{vol}(C)}$, so the denominator in \eqref{eq:phi_max_exact} is $(a+b)^2$. Two common regimes give simpler sufficient (but slightly stronger) conditions: \begin{enumerate} \item \textbf{Seed-dominated regime ($b\le a$).} If $\rho\sqrt{\mathrm{vol}(C)}\le 1/\sqrt{d_v}$, then $(a+b)^2\le (2a)^2=4/d_v$. Thus a sufficient condition for \eqref{eq:Delta_slack_condition} is \begin{equation}\label{eq:phi_seed_sufficient} \phi(C)\;\le\; \frac{\mu_C^2(1-\eta)^2\rho^2\,d_{\mathrm{out}}^2\,d_{\mathrm{in}}\,d_v} {(1-\alpha)^2\,\mathrm{vol}(C)}. \end{equation} \item \textbf{Penalty-dominated regime ($a\le b$).} If $1/\sqrt{d_v}\le \rho\sqrt{\mathrm{vol}(C)}$, then $(a+b)^2\le (2b)^2=4\rho^2\mathrm{vol}(C)$. Thus a sufficient condition for \eqref{eq:Delta_slack_condition} is \begin{equation}\label{eq:phi_penalty_sufficient} \phi(C)\;\le\; \frac{\mu_C^2(1-\eta)^2\,d_{\mathrm{out}}^2\,d_{\mathrm{in}}} {(1-\alpha)^2\,\mathrm{vol}(C)^2}. \end{equation} \end{enumerate} \end{remark} \begin{remark}[Why $\phi(C)=O(\rho)$ in the typical local-cluster scaling]\label{rem:phi_O_rho} A common locality regime assumes \[ \mathrm{vol}(C)\le \frac{V_0}{\rho}, \qquad d_{\mathrm{in}}\ge d_0, \qquad d_v\ge d_0, \qquad \mu_C\ge \mu_0, \qquad d_{\mathrm{out}}\ge \frac{c_0}{\alpha^2\rho}, \] for constants $V_0,d_0,\mu_0,c_0>0$. For small $\rho$, one typically has $\rho\sqrt{\mathrm{vol}(C)}\le \rho\sqrt{V_0/\rho}=\sqrt{V_0\rho}\le 1/\sqrt{d_0}$, so the seed-dominated regime in Remark~\ref{rem:phi_regimes} applies. Then \eqref{eq:phi_seed_sufficient} yields the explicit scaling \[ \phi(C)\;\le\; \frac{\mu_0^2(1-\eta)^2\,c_0^2\,d_0^2}{\alpha^4(1-\alpha)^2\,V_0}\;\rho, \] which is of the form $\phi(C)\le c\,\rho$ with a constant $c$ depending only on $(\mu_0,d_0,c_0,V_0,\alpha,\eta)$. \end{remark} % ------------------------------------------------------------ </syntaxhighlight> If you want, I can also add a one-line corollary right after this snippet that explicitly states: “If ϕ(C)≤ϕmax(C)\phi(C)\le\phi_{\max}(C)ϕ(C)≤ϕmax(C) then Δ(C)≤(1−η)ραdout\Delta(C)\le(1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}Δ(C)≤(1−η)ραdout and hence γCˉ≥ηραdout\gamma_{\bar C}\ge \eta\rho\alpha\sqrt{d_{\mathrm{out}}}γCˉ≥ηραdout” (linking directly back to your theorem).
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)