Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Starting from the definition of ΔC\DeltaCΔC in that section specialized to the ℓ1\ell1ℓ1-regularized PPR objective 3 o… === Starting from the definition of Δ(C)\Delta(C)Δ(C) in that section (specialized to the ℓ1\ell_1ℓ1-regularized PPR objective (3) open-problem-fountoulakis22a ), Δ(C)=1−α2μC ϕ(C) vol(C)dout din (αdv+ραvol(C)),\Delta(C) = \frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\,\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right),Δ(C)=2μC1−αdoutdinϕ(C)vol(C)(dvα+ραvol(C)), you want to solve the inequality Δ(C)≤(1−η)ραdout(η∈(0,1)).\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}} \qquad(\eta\in(0,1)).Δ(C)≤(1−η)ραdout(η∈(0,1)). ===== Factor out α\alphaα inside the parentheses and cancel α>0\alpha>0α>0 on both sides: ===== 1−α2μC ϕ(C) vol(C)dout din (1dv+ρvol(C)) ≤ (1−η)ρdout.\frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\,\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\right) \;\le\; (1-\eta)\rho\sqrt{d_{\mathrm{out}}}.2μC1−αdoutdinϕ(C)vol(C)(dv1+ρvol(C))≤(1−η)ρdout. Rearrange to isolate the square root: ϕ(C) vol(C)dout din ≤ 2μC1−α (1−η)ρdout1dv+ρvol(C).\sqrt{\frac{\phi(C)\,\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}} \;\le\; \frac{2\mu_C}{1-\alpha}\, \frac{(1-\eta)\rho\sqrt{d_{\mathrm{out}}}}{\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}}.doutdinϕ(C)vol(C)≤1−α2μCdv1+ρvol(C)(1−η)ρdout. Square both sides and solve for ϕ(C)\phi(C)ϕ(C): ϕ(C) ≤ ϕmax(C):=4μC2(1−η)2ρ2 dout2 din(1−α)2 vol(C) (1dv+ρvol(C))2.\boxed{ \phi(C)\;\le\;\phi_{\max}(C) := \frac{4\mu_C^2(1-\eta)^2\rho^2\,d_{\mathrm{out}}^2\,d_{\mathrm{in}}} {(1-\alpha)^2\,\mathrm{vol}(C)\,\Bigl(\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\Bigr)^2}. }ϕ(C)≤ϕmax(C):=(1−α)2vol(C)(dv1+ρvol(C))24μC2(1−η)2ρ2dout2din. That is the exact “how small should conductance be?” threshold implied by your condition. ==== The denominator contains (1dv+ρvol(C))2\Bigl(\frac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\Bigr)^2(dv1+ρvol(C))2. Depending on which term dominates, you get simpler scaling: ==== ===== If ρvol(C)≪1/dv\rho\sqrt{\mathrm{vol}(C)} \ll 1/\sqrt{d_v}ρvol(C)≪1/dv (equivalently vol(C)≪1/(ρ2dv)\mathrm{vol}(C)\ll 1/(\rho^2 d_v)vol(C)≪1/(ρ2dv)), then ===== (1dv+ρvol(C))2≈1dv,\Bigl(\tfrac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\Bigr)^2 \approx \frac{1}{d_v},(dv1+ρvol(C))2≈dv1, so ϕmax(C) ≈ 4μC2(1−η)2ρ2 dout2 din dv(1−α)2 vol(C).\phi_{\max}(C)\;\approx\; \frac{4\mu_C^2(1-\eta)^2\rho^2\,d_{\mathrm{out}}^2\,d_{\mathrm{in}}\,d_v}{(1-\alpha)^2\,\mathrm{vol}(C)}.ϕmax(C)≈(1−α)2vol(C)4μC2(1−η)2ρ2dout2dindv. ===== If ρvol(C)≫1/dv\rho\sqrt{\mathrm{vol}(C)} \gg 1/\sqrt{d_v}ρvol(C)≫1/dv, then ===== (1dv+ρvol(C))2≈ρ2vol(C),\Bigl(\tfrac{1}{\sqrt{d_v}}+\rho\sqrt{\mathrm{vol}(C)}\Bigr)^2 \approx \rho^2\mathrm{vol}(C),(dv1+ρvol(C))2≈ρ2vol(C), so ϕmax(C) ≈ 4μC2(1−η)2 dout2 din(1−α)2 vol(C)2.\phi_{\max}(C)\;\approx\; \frac{4\mu_C^2(1-\eta)^2\,d_{\mathrm{out}}^2\,d_{\mathrm{in}}}{(1-\alpha)^2\,\mathrm{vol}(C)^2}.ϕmax(C)≈(1−α)2vol(C)24μC2(1−η)2dout2din. ==== In the corollary regime you were already using (typical local clustering assumptions): ==== * vol(C)≲V0/ρ\mathrm{vol}(C)\lesssim V_0/\rhovol(C)≲V0/ρ, * din,dv≳d0d_{\mathrm{in}},d_v\gtrsim d_0din,dv≳d0 (bounded below), * μC≳μ0\mu_C\gtrsim \mu_0μC≳μ0 (internally well-conditioned), * dout≳c0/(α2ρ)d_{\mathrm{out}}\gtrsim c_0/(\alpha^2\rho)dout≳c0/(α2ρ) (outside degrees large enough so λi=ραdi\lambda_i=\rho\alpha\sqrt{d_i}λi=ραdi is Θ(ρ)\Theta(\sqrt{\rho})Θ(ρ)), then ϕmax(C)\phi_{\max}(C)ϕmax(C) simplifies to a constant multiple of ρ\rhoρ: ϕmax(C) ≳ μ02(1−η)2 c02 d02α4(1−α)2 V0⏟constant depending on parameters⋅ρ,\phi_{\max}(C)\;\gtrsim\; \underbrace{ \frac{\mu_0^2(1-\eta)^2\,c_0^2\,d_0^2}{\alpha^4(1-\alpha)^2\,V_0} }_{\text{constant depending on parameters}} \cdot \rho,ϕmax(C)≳constant depending on parametersα4(1−α)2V0μ02(1−η)2c02d02⋅ρ, (up to the same mild “ρ\rhoρ small enough so the seed term dominates” caveat you used earlier). So in that common regime, a clean sufficient statement is: * Conductance needs to be on the order of ρ\rhoρ (i.e. ϕ(C)≤c ρ\phi(C)\le c\,\rhoϕ(C)≤cρ for a small-enough constant ccc depending on α,μC,dout,din,vol(C),dv,η\alpha,\mu_C,d_{\mathrm{out}},d_{\mathrm{in}},\mathrm{vol}(C),d_v,\etaα,μC,dout,din,vol(C),dv,η). If you want, I can also rewrite ϕmax(C)\phi_{\max}(C)ϕmax(C) in terms of the cut size cut(C,Cˉ)\mathrm{cut}(C,\bar C)cut(C,Cˉ) instead of ϕ(C)\phi(C)ϕ(C), which sometimes reads more directly as a “boundary must be at most ___ edges” condition.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)