Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below is a single self-contained LaTeX snippet that you can paste in your file to replace the entire section starting at === Below is a single self-contained LaTeX snippet that you can paste in your file to replace the entire section starting at <syntaxhighlight lang="latex">\section{A conductance--connectivity--degree lower bound on the margin} </syntaxhighlight> and ending at its closing remark. This version does not assume \hat x_C>0 anywhere. Instead, it defines x^\hat xx^ as the restricted minimizer on CCC, proves x^C≥0\hat x_C\ge 0x^C≥0, builds the global KKT certificate using the restricted KKT subgradient, and then derives an explicit parameterized lower bound on the outside margin on Cˉ\bar CCˉ in terms of ϕ(C)\phi(C)ϕ(C), μC\mu_CμC, and doutd_{\mathrm{out}}dout. It also includes a corollary giving an Ω(ρ)\Omega(\sqrt{\rho})Ω(ρ) regime. <syntaxhighlight lang="latex">% ============================================================ \section{A conductance--connectivity--degree lower bound on the margin} \label{sec:gamma_conductance_connectivity_degree} We specialize to the $\ell_1$-regularized PageRank objective~(3): \begin{equation}\label{eq:ppr_obj_gamma_param} \min_{x\in\mathbb{R}^n} F(x) := \underbrace{\frac12 x^\top Qx-\alpha x^\top D^{-1/2}s}_{=:f(x)} \;+\; \underbrace{\rho\alpha\|D^{1/2}x\|_1}_{=:g(x)}. \end{equation} Here $G=(V,E)$ is undirected and unweighted, $A$ is the adjacency matrix, $D$ is the diagonal degree matrix, $s=e_v$ is a seed at node $v$, and \begin{equation}\label{eq:Q_def_gamma_param} Q=\alpha I+\frac{1-\alpha}{2}L = \frac{1+\alpha}{2}I-\frac{1-\alpha}{2}\,D^{-1/2}AD^{-1/2}. \end{equation} The weighted $\ell_1$ penalty has coordinate weights \begin{equation}\label{eq:lambda_def_gamma_param} g(x)=\sum_{i=1}^n \lambda_i |x_i|, \qquad \lambda_i:=\rho\alpha\sqrt{d_i}. \end{equation} Since $Q\succeq \alpha I$, the function $f$ is $\alpha$-strongly convex and hence $F=f+g$ has a unique minimizer $x^\star$. \paragraph{Cluster notation.} Fix a set (candidate cluster) $C\subseteq V$ with $v\in C$, and let $\bar C:=V\setminus C$. Define the volume and cut: \[ \mathrm{vol}(C):=\sum_{i\in C} d_i, \qquad \mathrm{cut}(C,\bar C):=|\{(i,j)\in E:\; i\in C,\ j\in\bar C\}|. \] We use the (one-sided) conductance \[ \phi(C):=\frac{\mathrm{cut}(C,\bar C)}{\mathrm{vol}(C)}. \] Let \[ d_{\mathrm{in}}:=\min_{j\in C} d_j, \qquad d_{\mathrm{out}}:=\min_{i\in\bar C} d_i, \qquad d_v:=d_{v}. \] We write $N(i)$ for the neighbor set of node $i$. \paragraph{Internal connectivity parameter.} Let \begin{equation}\label{eq:muC_def_gamma_param} \mu_C:=\lambda_{\min}(Q_{CC}), \end{equation} the smallest eigenvalue of the principal submatrix $Q_{CC}$. \subsection{Restricted minimizer on $C$, its nonnegativity, and a norm bound} Define $b:=\alpha D^{-1/2}s$. Since $s=e_v$ and $v\in C$, the vector $b_C$ has exactly one nonzero entry and \begin{equation}\label{eq:bC_norm_gamma_param} \|b_C\|_2=\frac{\alpha}{\sqrt{d_v}}. \end{equation} \begin{definition}[Restricted minimizer on $C$]\label{def:xhat_restricted_gamma_param} Let $\hat x$ denote the unique minimizer of \eqref{eq:ppr_obj_gamma_param} subject to $x_{\bar C}=0$: \begin{equation}\label{eq:xhat_def_gamma_param} \hat x \in \operatorname*{argmin}_{x\in\mathbb{R}^n:\; x_{\bar C}=0}\; F(x). \end{equation} Equivalently, $\hat x_{\bar C}=0$ and $\hat x_C$ uniquely minimizes \[ \min_{x_C\in\mathbb{R}^{|C|}} \left\{ \frac12 x_C^\top Q_{CC}x_C - b_C^\top x_C + \sum_{i\in C}\lambda_i|x_i| \right\}. \] \end{definition} \begin{lemma}[Absolute-value improvement and nonnegativity]\label{lem:abs_improvement_nonneg_gamma_param} Assume $v\in C$ so that $b_C\ge 0$ and $b_{\bar C}=0$. Then for every $x$ with $x_{\bar C}=0$, the componentwise absolute value $|x|$ satisfies \[ F(|x|)\le F(x). \] Consequently, the restricted minimizer satisfies $\hat x_C\ge 0$ componentwise. \end{lemma} \begin{proof} Fix any $x$ with $x_{\bar C}=0$ and set $y:=|x|$ (so $y_{\bar C}=0$). Write \[ F(x)=\frac12 x^\top Qx - b^\top x + \sum_{i=1}^n \lambda_i|x_i|. \] \medskip\noindent\textbf{Quadratic term.} Since $Q=\frac{1+\alpha}{2}I-\frac{1-\alpha}{2}D^{-1/2}AD^{-1/2}$, we have $Q_{ij}\le 0$ for $i\neq j$. Expand \[ x^\top Qx = \sum_i Q_{ii}x_i^2 + 2\sum_{i<j}Q_{ij}x_i x_j. \] For each $i<j$, we have $x_i x_j\le |x_i||x_j|=y_i y_j$, and since $Q_{ij}\le 0$ this implies $Q_{ij}x_i x_j \ge Q_{ij}y_i y_j$. Hence $x^\top Qx \ge y^\top Qy$. \medskip\noindent\textbf{Linear term.} Since $b\ge 0$ and $y_i=|x_i|\ge x_i$ for all $i$, we have $-b^\top y \le -b^\top x$. \medskip\noindent\textbf{$\ell_1$ term.} $\sum_i \lambda_i|y_i|=\sum_i\lambda_i|x_i|$ by definition. \medskip\noindent Combining the three comparisons gives $F(y)\le F(x)$. Now let $\hat x$ be the unique restricted minimizer. Then $F(|\hat x|)\le F(\hat x)$, so $|\hat x|$ is also a minimizer. By uniqueness, $|\hat x|=\hat x$, hence $\hat x_C\ge 0$. \end{proof} \begin{lemma}[Restricted KKT on $C$]\label{lem:restricted_KKT_on_C_gamma_param} There exists a vector $z_C\in\mathbb{R}^{|C|}$ such that \begin{equation}\label{eq:restricted_KKT_on_C_gamma_param} Q_{CC}\hat x_C - b_C + z_C = 0, \end{equation} and for every $i\in C$, \begin{equation}\label{eq:zC_in_subdiff_gamma_param} z_{C,i}\in \lambda_i\,\partial|\hat x_i| \subseteq [-\lambda_i,\lambda_i]. \end{equation} In particular, $\|z_C\|_2 \le \|\lambda_C\|_2 = \rho\alpha\sqrt{\mathrm{vol}(C)}$. \end{lemma} \begin{proof} The restricted objective over $x_C$ is strongly convex because $Q_{CC}\succ 0$ and the $\ell_1$ term is convex, so $\hat x_C$ is unique. First-order optimality yields \[ 0\in Q_{CC}\hat x_C - b_C + \partial\!\Big(\sum_{i\in C}\lambda_i|\hat x_i|\Big), \] which is exactly the existence of $z_C$ satisfying \eqref{eq:restricted_KKT_on_C_gamma_param}--\eqref{eq:zC_in_subdiff_gamma_param}. The norm bound follows from $|z_{C,i}|\le \lambda_i$ and $\|\lambda_C\|_2^2=\sum_{i\in C}(\rho\alpha\sqrt{d_i})^2=(\rho\alpha)^2\mathrm{vol}(C)$. \end{proof} \begin{lemma}[Bounding $\|\hat x_C\|_2$ by internal connectivity]\label{lem:xC_norm_gamma_param} Let $\mu_C=\lambda_{\min}(Q_{CC})$. Then \begin{equation}\label{eq:xC_norm_gamma_param} \|\hat x_C\|_2 \;\le\; \frac{1}{\mu_C}\left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \end{equation} \end{lemma} \begin{proof} From Lemma~\ref{lem:restricted_KKT_on_C_gamma_param}, $Q_{CC}\hat x_C=b_C-z_C$, so \[ \|\hat x_C\|_2 \le \|Q_{CC}^{-1}\|_2\,\|b_C-z_C\|_2 \le \|Q_{CC}^{-1}\|_2\bigl(\|b_C\|_2+\|z_C\|_2\bigr). \] Since $\lambda_{\min}(Q_{CC})=\mu_C$, we have $\|Q_{CC}^{-1}\|_2=1/\mu_C$. Also, $\|b_C\|_2=\alpha/\sqrt{d_v}$ by \eqref{eq:bC_norm_gamma_param}, and $\|z_C\|_2\le \rho\alpha\sqrt{\mathrm{vol}(C)}$ by Lemma~\ref{lem:restricted_KKT_on_C_gamma_param}. Substituting yields \eqref{eq:xC_norm_gamma_param}. \end{proof} \subsection{A pointwise outside-gradient bound from conductance and degrees} \begin{lemma}[Outside gradient bound from conductance and degrees]\label{lem:outside_grad_bound_gamma_param} Assume $v\in C$ so that $b_{\bar C}=0$. Then for each $i\in\bar C$, \begin{equation}\label{eq:outside_grad_pointwise_gamma_param} |\nabla f(\hat x)_i| \le \frac{1-\alpha}{2}\,\|\hat x_C\|_2\, \sqrt{\frac{\mathrm{cut}(C,\bar C)}{d_i\,d_{\mathrm{in}}}}. \end{equation} Consequently, using $d_i\ge d_{\mathrm{out}}$ and $\mathrm{cut}(C,\bar C)=\phi(C)\mathrm{vol}(C)$, \begin{equation}\label{eq:outside_grad_uniform_gamma_param} \max_{i\in\bar C}|\nabla f(\hat x)_i| \le \frac{1-\alpha}{2}\,\|\hat x_C\|_2\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}. \end{equation} \end{lemma} \begin{proof} Fix $i\in\bar C$. Since $\hat x_{\bar C}=0$ and $b_{\bar C}=0$, \[ \nabla f(\hat x)_i = (Q\hat x - b)_i = (Q_{\bar C C}\hat x_C)_i = \sum_{j\in C}Q_{ij}\hat x_j. \] From \eqref{eq:Q_def_gamma_param}, for $i\neq j$ we have \[ Q_{ij} = -\frac{1-\alpha}{2}(D^{-1/2}AD^{-1/2})_{ij} = \begin{cases} -\dfrac{1-\alpha}{2}\dfrac{1}{\sqrt{d_i d_j}}, & (i,j)\in E,\\[2mm] 0, & (i,j)\notin E. \end{cases} \] Thus \[ |\nabla f(\hat x)_i| = \left|\sum_{j\in C\cap N(i)} -\frac{1-\alpha}{2}\frac{\hat x_j}{\sqrt{d_i d_j}}\right| \le \frac{1-\alpha}{2}\cdot \frac{1}{\sqrt{d_i}} \sum_{j\in C\cap N(i)}\frac{|\hat x_j|}{\sqrt{d_j}}. \] Apply Cauchy--Schwarz: \[ \sum_{j\in C\cap N(i)}\frac{|\hat x_j|}{\sqrt{d_j}} \le \left(\sum_{j\in C\cap N(i)} \hat x_j^2\right)^{1/2} \left(\sum_{j\in C\cap N(i)} \frac{1}{d_j}\right)^{1/2} \le \|\hat x_C\|_2\left(\sum_{j\in C\cap N(i)} \frac{1}{d_j}\right)^{1/2}. \] Since $d_j\ge d_{\mathrm{in}}$ for all $j\in C$, \[ \sum_{j\in C\cap N(i)} \frac{1}{d_j} \le \frac{|C\cap N(i)|}{d_{\mathrm{in}}}. \] Finally, $|C\cap N(i)|$ is the number of cut edges incident to $i$, hence $|C\cap N(i)|\le \mathrm{cut}(C,\bar C)$, which gives \eqref{eq:outside_grad_pointwise_gamma_param}. The uniform bound \eqref{eq:outside_grad_uniform_gamma_param} follows by using $d_i\ge d_{\mathrm{out}}$ and $\mathrm{cut}(C,\bar C)=\phi(C)\mathrm{vol}(C)$. \end{proof} \subsection{A parameterized outside-margin lower bound and a $\sqrt{\rho}$ regime} Define the cluster-dependent quantity \begin{equation}\label{eq:DeltaC_def_gamma_param} \Delta(C) := \frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \end{equation} \begin{theorem}[Margin bound parameterized by conductance, internal connectivity, and outside degree] \label{thm:gamma_parameterized_by_cluster} Assume $v\in C$ and let $\hat x$ be the restricted minimizer \eqref{eq:xhat_def_gamma_param}. Define the \emph{outside margin} on the complement \[ \gamma_{\bar C} := \min_{i\in \bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr). \] Then: \begin{enumerate} \item[(i)] If $\Delta(C)<\min_{i\in\bar C}\lambda_i=\rho\alpha\sqrt{d_{\mathrm{out}}}$, then $\hat x$ is the \emph{unique} global minimizer of \eqref{eq:ppr_obj_gamma_param}. In particular, $x^\star=\hat x$ and $x^\star_{\bar C}=0$. \item[(ii)] Whenever $x^\star=\hat x$, we have the explicit bound \begin{equation}\label{eq:gamma_param_bound_gamma_param} \gamma_{\bar C} \;\ge\; \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C). \end{equation} Equivalently, if $\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}$ for some $\eta\in(0,1)$, then \begin{equation}\label{eq:gamma_eta_bound_gamma_param} \gamma_{\bar C} \ge \eta\,\rho\alpha\sqrt{d_{\mathrm{out}}}. \end{equation} \end{enumerate} \end{theorem} \begin{proof} We prove (i) and (ii) in order. \medskip\noindent\textbf{Step 1: KKT conditions.} Since $f$ is differentiable and $g(x)=\sum_i \lambda_i|x_i|$, a point $x$ is optimal if and only if there exists $z\in\partial g(x)$ such that $\nabla f(x)+z=0$. Moreover, $F$ is strongly convex (because $Q\succeq \alpha I$), hence the minimizer is unique. \medskip\noindent\textbf{Step 2: Build a global KKT certificate from the restricted minimizer.} From Lemma~\ref{lem:restricted_KKT_on_C_gamma_param}, there exists $z_C$ such that \[ Q_{CC}\hat x_C-b_C+z_C=0 \quad\text{and}\quad z_{C,i}\in[-\lambda_i,\lambda_i]\;\; \forall i\in C. \] Define $z\in\mathbb{R}^n$ by \[ z_i := \begin{cases} (z_C)_i, & i\in C,\\[1mm] -\nabla f(\hat x)_i, & i\in\bar C. \end{cases} \] We claim $z\in\partial g(\hat x)$ if $|\nabla f(\hat x)_i|\le \lambda_i$ for all $i\in\bar C$. Indeed: \begin{itemize} \item If $i\in C$, then $z_{C,i}\in \lambda_i\,\partial|\hat x_i|$ by \eqref{eq:zC_in_subdiff_gamma_param}, hence it is valid. \item If $i\in\bar C$, then $\hat x_i=0$ and $z_i\in[-\lambda_i,\lambda_i]$ holds if $|z_i|=|\nabla f(\hat x)_i|\le \lambda_i$. \end{itemize} Now check $\nabla f(\hat x)+z=0$. On $C$, since $\hat x_{\bar C}=0$, \[ \nabla f(\hat x)_C=(Q\hat x-b)_C = Q_{CC}\hat x_C - b_C, \] so $\nabla f(\hat x)_C+z_C=0$ by $Q_{CC}\hat x_C-b_C+z_C=0$. On $\bar C$, $\nabla f(\hat x)_{\bar C}+z_{\bar C}=0$ by definition. Thus $\nabla f(\hat x)+z=0$. \medskip\noindent\textbf{Step 3: Enforce the outside inequalities via $\Delta(C)$.} By Lemma~\ref{lem:outside_grad_bound_gamma_param} and Lemma~\ref{lem:xC_norm_gamma_param}, \[ \max_{i\in\bar C}|\nabla f(\hat x)_i| \le \Delta(C). \] Therefore, if $\Delta(C)<\rho\alpha\sqrt{d_{\mathrm{out}}}\le \lambda_i$ for all $i\in\bar C$, then $|\nabla f(\hat x)_i|<\lambda_i$ on $\bar C$ and hence $z\in\partial g(\hat x)$. Thus $0\in\partial F(\hat x)$, so $\hat x$ is a minimizer. By uniqueness, $\hat x=x^\star$, proving (i). \medskip\noindent\textbf{Step 4: Lower bound the outside margin.} Assume $x^\star=\hat x$. Then for every $i\in\bar C$, \[ \lambda_i-|\nabla f(x^\star)_i| =\lambda_i-|\nabla f(\hat x)_i| \ge \lambda_i-\Delta(C) \ge \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C), \] where we used $\lambda_i\ge \rho\alpha\sqrt{d_{\mathrm{out}}}$. Taking the minimum over $i\in\bar C$ yields \eqref{eq:gamma_param_bound_gamma_param}, and \eqref{eq:gamma_eta_bound_gamma_param} follows. \end{proof} \begin{corollary}[A concrete $\gamma_{\bar C}=\Omega(\sqrt{\rho})$ regime]\label{cor:gamma_Omega_sqrt_rho_regime} Assume the hypotheses of Theorem~\ref{thm:gamma_parameterized_by_cluster}. Suppose, in addition, that there are constants $V_0,d_0,\mu_0,c_0>0$ such that \[ \mathrm{vol}(C)\le \frac{V_0}{\rho},\qquad d_{\mathrm{in}}\ge d_0,\qquad d_v\ge d_0,\qquad \mu_C\ge \mu_0,\qquad d_{\mathrm{out}}\ge \frac{c_0}{\alpha^2\rho}. \] If furthermore the conductance satisfies \begin{equation}\label{eq:phi_rho_condition_gamma_param} \phi(C)\le c_1\rho \quad\text{for a sufficiently small constant $c_1$ (depending only on $V_0,d_0,\mu_0,c_0,\alpha$),} \end{equation} then there exists a constant $\eta\in(0,1)$ (depending only on the same parameters) such that \[ \gamma_{\bar C} \ge \eta\,\sqrt{\rho}. \] \end{corollary} \begin{proof} First, from $d_{\mathrm{out}}\ge c_0/(\alpha^2\rho)$ we get \[ \rho\alpha\sqrt{d_{\mathrm{out}}}\ge \rho\alpha\sqrt{\frac{c_0}{\alpha^2\rho}}=\sqrt{c_0}\,\sqrt{\rho}. \] Next, using the assumed bounds in \eqref{eq:DeltaC_def_gamma_param}, \begin{align*} \Delta(C) &\le \frac{1-\alpha}{2\mu_0}\, \sqrt{\frac{\phi(C)\cdot (V_0/\rho)}{(c_0/(\alpha^2\rho))\cdot d_0}}\, \left(\frac{\alpha}{\sqrt{d_0}}+\rho\alpha\sqrt{V_0/\rho}\right)\\ &= \frac{1-\alpha}{2\mu_0}\, \alpha\,\sqrt{\frac{V_0}{c_0 d_0}}\, \sqrt{\phi(C)}\, \left(\frac{\alpha}{\sqrt{d_0}}+\alpha\sqrt{V_0}\sqrt{\rho}\right). \end{align*} Under \eqref{eq:phi_rho_condition_gamma_param}, $\sqrt{\phi(C)}\le \sqrt{c_1}\sqrt{\rho}$, hence $\Delta(C)\le K\sqrt{c_1}\sqrt{\rho}$ for a constant $K$ depending only on $(V_0,d_0,\mu_0,c_0,\alpha)$. Choosing $c_1$ sufficiently small ensures $\Delta(C)\le (1-\eta)\sqrt{c_0}\sqrt{\rho}$ for some $\eta\in(0,1)$, i.e. \[ \Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}. \] Apply \eqref{eq:gamma_eta_bound_gamma_param} to conclude $\gamma_{\bar C}\ge \eta\rho\alpha\sqrt{d_{\mathrm{out}}} \ge \eta\sqrt{c_0}\sqrt{\rho}$, and absorb $\sqrt{c_0}$ into $\eta$. \end{proof} \begin{remark}[Outside margin vs.\ the global margin $\gamma$] Theorem~\ref{thm:gamma_parameterized_by_cluster} lower bounds the margin on $\bar C$. The \emph{global} strict-complementarity margin $\gamma=\min_{i\in I^\star}(\lambda_i-|\nabla f(x^\star)_i|)$ could be smaller if some coordinates inside $C$ are also zero at $x^\star$. To deduce the same lower bound for the global $\gamma$, it suffices (but is not implied by conductance alone) to additionally have $x^\star_i>0$ for all $i\in C$, i.e.\ $I^\star=\bar C$. \end{remark} % ============================================================ </syntaxhighlight> If you paste this in place of your current section, it should compile cleanly and removes the “mystery assumption” x^C>0\hat x_C>0x^C>0 entirely.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)