Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: You asked for a proof that the heat semigroup GteνtΔGte^{\nu t\Delta}GteνtΔ is infinitely smoothing. === You asked for a proof that the heat semigroup Gt=eνtΔG_t=e^{\nu t\Delta}Gt=eνtΔ is infinitely smoothing. Below I give a compact, rigorous statement and two standard proofs (Fourier / multiplier and kernel / convolution). Both make the same point: for every t>0t>0t>0 the operator GtG_tGt maps very rough data to C∞C^\inftyC∞; moreover one has quantitative smoothing estimates (derivatives gain powers of t−1/2t^{-1/2}t−1/2). I will work on R3\mathbb{R}^3R3. Fix ν>0\nu>0ν>0. Write Gtf=Kt∗fG_t f = K_t * fGtf=Kt∗f where Kt(x)=(4πνt)−3/2exp (−∣x∣2/(4νt))K_t(x)=(4\pi\nu t)^{-3/2}\exp\!\big(-|x|^2/(4\nu t)\big)Kt(x)=(4πνt)−3/2exp(−∣x∣2/(4νt)) is the heat kernel. ==== For every real sss and every real r≥0r\ge0r≥0 there exists C=C(ν,r)C=C(\nu,r)C=C(ν,r) such that for all t>0t>0t>0 and all fff with finite HsH^{s}Hs-norm, ==== ∥Gtf∥Hs+r ≤ C t−r/2 ∥f∥Hs.\boxed{\qquad \|G_t f\|_{H^{s+r}} \;\le\; C\,t^{-r/2}\,\|f\|_{H^s}. \qquad}∥Gtf∥Hs+r≤Ct−r/2∥f∥Hs. Consequences: * If f∈Hsf\in H^sf∈Hs (or L2L^2L2, or a distribution), then for every t>0t>0t>0 the function GtfG_t fGtf is C∞C^\inftyC∞ in xxx. * More concretely, for each multiindex α\alphaα there is CαC_\alphaCα with ∥∂xαGtf∥L2≤Cα t−∣α∣/2 ∥f∥L2.\|\partial_x^\alpha G_t f\|_{L^2} \le C_\alpha\, t^{-|\alpha|/2}\,\|f\|_{L^2}.∥∂xαGtf∥L2≤Cαt−∣α∣/2∥f∥L2. '' Kernel form: for each multiindex α\alphaα there is CαC_\alphaCα such that ∣∂xαKt(x)∣≤Cα t−(3+∣α∣)/2exp (−∣x∣2/(8νt)).|\partial_x^\alpha K_t(x)| \le C_\alpha\, t^{-(3+|\alpha|)/2}\exp\!\big(-|x|^2/(8\nu t)\big).∣∂xαKt(x)∣≤Cαt−(3+∣α∣)/2exp(−∣x∣2/(8νt)). Hence Gtf=Kt∗fG_t f=K_t''fGtf=Kt∗f is C∞C^\inftyC∞ for all t>0t>0t>0 even if fff is merely a tempered distribution. ==== Recall Gtf^(ξ)=e−νt∣ξ∣2f^(ξ)\widehat{G_t f}(\xi)=e^{-\nu t|\xi|^2}\widehat f(\xi)Gtf(ξ)=e−νt∣ξ∣2f(ξ). Using the Sobolev norm definition ==== ∥g∥Hm2=∫R3(1+∣ξ∣2)m∣g^(ξ)∣2 dξ\|g\|_{H^m}^2=\int_{\mathbb{R}^3}(1+|\xi|^2)^m|\widehat g(\xi)|^2\,d\xi∥g∥Hm2=∫R3(1+∣ξ∣2)m∣g(ξ)∣2dξ, ∥Gtf∥Hs+r2=∫R3(1+∣ξ∣2)s+r e−2νt∣ξ∣2 ∣f^(ξ)∣2 dξ=∫(1+∣ξ∣2)s [(1+∣ξ∣2)re−2νt∣ξ∣2] ∣f^(ξ)∣2 dξ≤supξ∈R3[(1+∣ξ∣2)re−2νt∣ξ∣2]⋅∥f∥Hs2.\begin{aligned} \|G_t f\|_{H^{s+r}}^2 &= \int_{\mathbb{R}^3} (1+|\xi|^2)^{s+r}\, e^{-2\nu t|\xi|^2}\,|\widehat f(\xi)|^2\,d\xi \\ &= \int (1+|\xi|^2)^{s}\,\big[(1+|\xi|^2)^{r}e^{-2\nu t|\xi|^2}\big]\,|\widehat f(\xi)|^2\,d\xi \\ &\le \sup_{\xi\in\mathbb{R}^3}\big[(1+|\xi|^2)^{r}e^{-2\nu t|\xi|^2}\big]\cdot \|f\|_{H^s}^2 . \end{aligned}∥Gtf∥Hs+r2=∫R3(1+∣ξ∣2)s+re−2νt∣ξ∣2∣f(ξ)∣2dξ=∫(1+∣ξ∣2)s[(1+∣ξ∣2)re−2νt∣ξ∣2]∣f(ξ)∣2dξ≤ξ∈R3sup[(1+∣ξ∣2)re−2νt∣ξ∣2]⋅∥f∥Hs2. Estimate the supremum: set ρ=∣ξ∣2\rho=|\xi|^2ρ=∣ξ∣2. The scalar function h(ρ)=(1+ρ)re−2νtρh(\rho)=(1+\rho)^{r}e^{-2\nu t\rho}h(ρ)=(1+ρ)re−2νtρ attains its maximum at some ρ≥0\rho\ge0ρ≥0; elementary calculus (or the bound (1+ρ)r≤Cr(1+ρr)(1+\rho)^r\le C_r(1+\rho^r)(1+ρ)r≤Cr(1+ρr) and the maximum of ρre−2νtρ\rho^r e^{-2\nu t\rho}ρre−2νtρ is attained at ρ∼1/t\rho\sim 1/tρ∼1/t) shows supξ(1+∣ξ∣2)re−2νt∣ξ∣2≤Cr t−r.\sup_{\xi}(1+|\xi|^2)^{r}e^{-2\nu t|\xi|^2} \le C_r\, t^{-r}.ξsup(1+∣ξ∣2)re−2νt∣ξ∣2≤Crt−r. Therefore ∥Gtf∥Hs+r2≤Cr t−r ∥f∥Hs2,\|G_t f\|_{H^{s+r}}^2 \le C_r\, t^{-r}\, \|f\|_{H^s}^2,∥Gtf∥Hs+r2≤Crt−r∥f∥Hs2, and taking square roots gives the desired inequality with t−r/2t^{-r/2}t−r/2 factor. Specializing to s=0s=0s=0 and integer r=∣α∣r=|\alpha|r=∣α∣ gives the derivative estimate ∥∂αGtf∥L2≲t−∣α∣/2∥f∥L2.\|\partial^\alpha G_t f\|_{L^2} \lesssim t^{-|\alpha|/2}\|f\|_{L^2}.∥∂αGtf∥L2≲t−∣α∣/2∥f∥L2. Since this holds for every rrr, Gtf∈⋂m≥0Hm⊂C∞G_t f\in\bigcap_{m\ge0}H^m\subset C^\inftyGtf∈⋂m≥0Hm⊂C∞ for any t>0t>0t>0. ==== We use explicit derivatives of the Gaussian kernel. ==== The heat kernel is Kt(x)=(4πνt)−3/2e−∣x∣2/(4νt).K_t(x)=(4\pi\nu t)^{-3/2} e^{-|x|^2/(4\nu t)}.Kt(x)=(4πνt)−3/2e−∣x∣2/(4νt). Differentiate under xxx. Each spatial derivative ∂xj\partial_{x_j}∂xj produces a polynomial factor in xxx multiplied by 1/(t)1/(t)1/(t) from differentiating the exponential; more precisely for any multiindex α\alphaα there are constants PαP_\alphaPα (polynomials) and CαC_\alphaCα with ∂xαKt(x)=t−(3+∣α∣)/2 Pα (x/t) e−∣x∣2/(4νt).\partial_x^\alpha K_t(x) = t^{-(3+|\alpha|)/2}\, P_\alpha\!\big(x/\sqrt{t}\big)\, e^{-|x|^2/(4\nu t)}.∂xαKt(x)=t−(3+∣α∣)/2Pα(x/t)e−∣x∣2/(4νt). From that one obtains the standard Gaussian bound (adjust constants): ∣∂xαKt(x)∣≤Cα t−(3+∣α∣)/2exp (−∣x∣2/(8νt)).|\partial_x^\alpha K_t(x)| \le C_\alpha\, t^{-(3+|\alpha|)/2}\exp\!\big(-|x|^2/(8\nu t)\big).∣∂xαKt(x)∣≤Cαt−(3+∣α∣)/2exp(−∣x∣2/(8νt)). Now let fff be a tempered distribution or an LpL^pLp-function. For any fixed t>0t>0t>0 the function x↦∂xαKt(x)x\mapsto\partial_x^\alpha K_t(x)x↦∂xαKt(x) is in L1(R3)L^1(\mathbb{R}^3)L1(R3) because the Gaussian tail makes the integral finite and the prefactor has only a polynomial singularity in ttt. Thus the convolution ∂xαKt∗f\partial^\alpha_x K_t * f∂xαKt∗f is well-defined as a continuous function whenever fff is (say) L∞L^\inftyL∞ or as a function in appropriate Lebesgue spaces via Young's inequality. In particular if fff is a tempered distribution, convolution with the smooth rapidly decaying function KtK_tKt produces a C∞C^\inftyC∞ function (standard distribution convolution theorem). Concretely, for f∈L∞f\in L^\inftyf∈L∞, ∥∂αGtf∥L∞=∥∂αKt∗f∥L∞≤∥∂αKt∥L1 ∥f∥L∞≲t−∣α∣/2∥f∥L∞.\|\partial^\alpha G_t f\|_{L^\infty} = \|\partial^\alpha K_t * f\|_{L^\infty} \le \|\partial^\alpha K_t\|_{L^1}\,\|f\|_{L^\infty} \lesssim t^{-|\alpha|/2}\|f\|_{L^\infty}.∥∂αGtf∥L∞=∥∂αKt∗f∥L∞≤∥∂αKt∥L1∥f∥L∞≲t−∣α∣/2∥f∥L∞. For f∈Lpf\in L^pf∈Lp combine ∥∂αKt∥L1\|\partial^\alpha K_t\|_{L^1}∥∂αKt∥L1 or other Young-type bounds to get analogous estimates. Thus for every t>0t>0t>0 the function GtfG_t fGtf has derivatives of all orders; i.e. Gtf∈C∞(R3)G_t f\in C^\infty(\mathbb{R}^3)Gtf∈C∞(R3). ==== - The factor t−∣α∣/2t^{-|\alpha|/2}t−∣α∣/2 is natural: roughly speaking, differentiating a Gaussian of width ∼t\sim\sqrt{t}∼t produces a factor (t)−∣α∣(\sqrt{t})^{-|\alpha|}(t)−∣α∣. ==== * The above shows instant regularization: even if fff is only an L2L^2L2-function (or distribution), for any fixed t>0t>0t>0 the result GtfG_t fGtf is smooth in space. Time-regularity at t=0t=0t=0 is weaker (there is a singularity as t↓0t\downarrow0t↓0 in the derivative estimates). * The Fourier and kernel proofs are two faces of the same phenomenon: the multiplier e−νt∣ξ∣2e^{-\nu t|\xi|^2}e−νt∣ξ∣2 decays rapidly for large ∣ξ∣|\xi|∣ξ∣ (cutting off high frequencies), and convolution with a Gaussian smooths and spreads singularities. ==== For the Navier–Stokes Picard setup you often need the particular case sss and r=1r=1r=1: ==== ∥eνtΔf∥Hs+1≤C t−1/2 ∥f∥Hs,\|e^{\nu t\Delta} f\|_{H^{s+1}} \le C\, t^{-1/2}\,\|f\|_{H^s},∥eνtΔf∥Hs+1≤Ct−1/2∥f∥Hs, which is exactly the heat-gain used to control the Duhamel integrand by a factor (t−s)−1/2(t-s)^{-1/2}(t−s)−1/2. If you want, I can now: * give a fully worked numeric constant for the HsH^sHs estimate (evaluate the supρ\sup_\rhosupρ bound explicitly), or * show how the same smoothing works on the torus T3\mathbb{T}^3T3 (Fourier series version), or * derive the pointwise-in-space bound for ∂αKt\partial^\alpha K_t∂αKt with explicit polynomial PαP_\alphaPα. Which of these would you like?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)