Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69440b7b-41f8-8010-9331-140a6dd5eed2
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== gpt-5-2-thinking == === User: Think well to give a correct answer, and if possible use two methods to make sure the result is correct. === Think well to give a correct answer, and if possible use two methods to make sure the result is correct. Just to make sure you correctly understand the requirements: * the sides are integer numbers * the volume is an integer number * the areas of the sides are irrational * for (1) find the volume of the tetrahedron with minimum a+b+c+d+e+f * for (2) find the volume of the tetrahedron that has volume = a+b+c+d+e+f === Assistant: I’ll use the standard labeling with vertices A,B,C,DA,B,C,DA,B,C,D and edge-lengths === I’ll use the standard labeling with vertices A,B,C,DA,B,C,DA,B,C,D and edge-lengths AB=a, AC=b, AD=c, BC=d, BD=e, CD=fAB=a,\ AC=b,\ AD=c,\ BC=d,\ BD=e,\ CD=fAB=a, AC=b, AD=c, BC=d, BD=e, CD=f Face-triangles are: (a,b,d),(a,c,e),(b,c,f),(d,e,f)(a,b,d), (a,c,e), (b,c,f), (d,e,f)(a,b,d),(a,c,e),(b,c,f),(d,e,f). A face area is rational iff 16 Δ2=(x+y+z)(−x+y+z)(x−y+z)(x+y−z)16\,\Delta^2=(x+y+z)(-x+y+z)(x-y+z)(x+y-z)16Δ2=(x+y+z)(−x+y+z)(x−y+z)(x+y−z) is a perfect square integer (then Δ=K/4\Delta=\sqrt{K}/4Δ=K/4 is rational). So “irrational face area” ⇔ that KKK is not a square. Volume check (two independent exact methods): Method 1 (Gram 3×3): Let u=AB→,v=AC→,w=AD→u=\overrightarrow{AB}, v=\overrightarrow{AC}, w=\overrightarrow{AD}u=AB,v=AC,w=AD. Then u ⋅ v=a2+b2−d22,u ⋅ w=a2+c2−e22,v ⋅ w=b2+c2−f22u\!\cdot\! v=\frac{a^2+b^2-d^2}{2},\quad u\!\cdot\! w=\frac{a^2+c^2-e^2}{2},\quad v\!\cdot\! w=\frac{b^2+c^2-f^2}{2}u⋅v=2a2+b2−d2,u⋅w=2a2+c2−e2,v⋅w=2b2+c2−f2 and V2=det(Gram(u,v,w))36.V^2=\frac{\det(\text{Gram}(u,v,w))}{36}.V2=36det(Gram(u,v,w)). Method 2 (Cayley–Menger 5×5): 288V2=det(0111110a2b2c21a20d2e21b2d20f21c2e2f20).288V^2=\det \begin{pmatrix} 0&1&1&1&1\\ 1&0&a^2&b^2&c^2\\ 1&a^2&0&d^2&e^2\\ 1&b^2&d^2&0&f^2\\ 1&c^2&e^2&f^2&0 \end{pmatrix}.288V2=det0111110a2b2c21a20d2e21b2d20f21c2e2f20. ==== (1) Minimum ==== 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 a+b+c+d+e+f ⇒ report the volume The minimum total edge length is 28, and one such tetrahedron is: (a,b,c,d,e,f)=(2,4,5,4,6,7),a+b+c+d+e+f=28.(a,b,c,d,e,f)=(2,4,5,4,6,7),\quad a+b+c+d+e+f=28.(a,b,c,d,e,f)=(2,4,5,4,6,7),a+b+c+d+e+f=28. Volume (both methods agree): * Cayley–Menger determinant =10368=288⋅62⇒V=6=10368=288\cdot 6^2\Rightarrow V=6=10368=288⋅62⇒V=6. * Gram method gives the same V=6V=6V=6. All four face areas are irrational (each K=16Δ2K=16\Delta^2K=16Δ2 is non-square): * (a,b,d)=(2,4,4): K=240(a,b,d)=(2,4,4):\ K=240(a,b,d)=(2,4,4): K=240 (not a square) * (a,c,e)=(2,5,6): K=351(a,c,e)=(2,5,6):\ K=351(a,c,e)=(2,5,6): K=351 * (b,c,f)=(4,5,7): K=1536(b,c,f)=(4,5,7):\ K=1536(b,c,f)=(4,5,7): K=1536 * (d,e,f)=(4,6,7): K=2295(d,e,f)=(4,6,7):\ K=2295(d,e,f)=(4,6,7): K=2295 ✅ Answer (1): V=6V=6V=6 (at the minimum possible total edge-length 282828). ==== (2) Find integer-edge tetrahedron with ==== 𝑉 = 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 V=a+b+c+d+e+f The smallest solution (by total edge sum, hence by VVV too) I find is: (a,b,c,d,e,f)=(4,10,17,12,19,22)(a,b,c,d,e,f)=(4,10,17,12,19,22)(a,b,c,d,e,f)=(4,10,17,12,19,22) a+b+c+d+e+f=84.a+b+c+d+e+f = 84.a+b+c+d+e+f=84. Volume (both methods agree): * Cayley–Menger determinant =2032128=288⋅842⇒V=84=2032128=288\cdot 84^2\Rightarrow V=84=2032128=288⋅842⇒V=84. * Gram method also gives V=84V=84V=84. All face areas are irrational (non-square KKK’s): * (4,10,12): K=5616(4,10,12):\ K=5616(4,10,12): K=5616 * (4,17,19): K=15360(4,17,19):\ K=15360(4,17,19): K=15360 * (10,17,22): K=106575(10,17,22):\ K=106575(10,17,22): K=106575 * (12,19,22): K=207495(12,19,22):\ K=207495(12,19,22): K=207495 ✅ Answer (2): V=84V=84V=84 (with total edge-length 848484). If you want, I can also list all (1)-type solutions at sum 282828 (they’re just relabelings) and/or additional equable solutions beyond the minimum.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)